
Brightening an
Archive
Streamlining access to OA datasets

Eric Lopatin, Terry Brady – April 2021

Merritt is a CoreTrustSeal certified, open-source digital
preservation system maintained by UC3 team at CDL.

● Three independent copies, three different cloud-based storage

providers, across two geographic locations with differing disaster

threats.

● Microservices for ingest, storage, inventory, audit, and replication.

Merritt serves librarians and researchers, as well as systems
internal and external to the University of California.

● Ten UC campus libraries and affiliated organizations

● eScholarship integration: 85 open access journals

● Dryad OA datasets

Our users

Merritt individually manages files and objects.

● A file being a single digital file

● An object can contain one or more digital files + metadata

Content management in Merritt

“Files” in Merritt are stored in cloud storage

my.pdfManagement occurs over multiple
cloud storage providers

● Amazon S3 & Glacier
● SDSC Qumulo
● Wasabi

“Objects” in Merritt have digital files and metadata

my.pdf my.xml
Objects in

Merritt are
referenced

with an ARK

Objects in Merritt can have “Versions”

my.pdf
v1

my.xml
v1

my.pdf
v2

my.xml
v1

Range of file sizes across Merritt

Max file size Min file size Average Producer files

289.8 GB 0 8.5 GB 20,102,755 †

Under 1MB 1MB -
10MB

10MB -
100MB

100MB -
1.0GB

1GB - 10GB 10GB -
100GB

> 100GB

17,830,145 671,802 1,475,116 112,584 11,782 1,231 95

† Many more system files for restructuring the database in the event of
 a catastrophic failure.

Dryad contains 34K CC0 datasets from approximately 2000
institutions, and 100K researchers.

● Every new dataset flows from Dryad into Merritt.

● Datasets are replicated to Zenodo

● Dryad generates the majority of access requests
(for individual files and entire objects)

http://datadryad.org

Dryad integration

Initial integration of the systems

● Downloads of both files and objects were enabled
during Merritt/Dryad integration.

● However the initial implementation provided an
inefficient means for doing so.

Connecting Merritt & DryadBrowser

Cloud
Storage

Dryad UI

Merritt UI

Merritt
Storage

Object Requests (legacy)

Browser

Dryad UI

Merritt UI

Merritt
Storage

Cloud
Storage

File.zip

Browser

Dryad UI

Merritt UI

Merritt
Storage

Cloud
Storage

File.zip

email

Normal Size Large Object - Asynchronous

Download URL

Major hurdles to address

● Long-running operations
○ Ingest

○ Download

● Multiple simultaneous downloads occurring through the
Dryad frontend.

● Each byte of digital content was streamed through
multiple applications.

Connecting Merritt & Dryad

Long-running operations

● Exceptionally large files: less than .05% to .5% of content
● Could be ingested or retrieved at any time
● Subject to timeout errors on upload and download
● AWS Load balancers timeout at ~1 hour
● We have configured Apache load balancers to permit

sessions to last 24 hours
● Waiting for a session to terminate can complicate the

timing of a software deployment

Additional hurdles to address

● Large dataset objects were delivered asynchronously,
with an email notification to the user.

● Depending on the domain, emails could be blocked.

Connecting Merritt & Dryad

Approach

● Needed a dependable way to stream content directly
from the cloud.

○ S3 compatible method that would work across all of our service

providers

● Settled on use of presigned URLs.

Re-engineering Access

Presigned URL Example: Public
$ cat > hello.txt
Hello There

$ aws s3 cp hello.txt s3://terrywbrady-test-ucop-public/ --acl
public-read
upload: ./hello.txt to s3://terrywbrady-test-ucop-public/hello.txt

$ curl
https://terrywbrady-test-ucop-public.s3-us-west-2.amazonaws.
com/hello.txt
Hello There

Presigned URL Example – Non-public S3 Object

$ aws s3 cp hello.txt
s3://terrywbrady-test-ucop-public/nonpublic.txt
upload: ./hello.txt to
s3://terrywbrady-test-ucop-public/nonpublic.txt

$ curl
https://terrywbrady-test-ucop-public.s3-us-west-2.amazonaws.com/
nonpublic.txt
<Error><Code>AccessDenied</Code><Message>Access
Denied</Message>...

Presigned URL Example – Non-public S3 Object

$ aws s3 presign s3://terrywbrady-test-ucop-public/nonpublic.txt

https://terrywbrady-test-ucop-public.s3.amazonaws.com/nonpublic.
txt?AWSAccessKeyId=AKIAYOGNF7UOV5VSVMJR&Expires=1591999565&Signa
ture=zppZEk83FBk6UtlNTqmD5ZR3EOA%3D

$ curl
"https://terrywbrady-test-ucop-public.s3.amazonaws.com/nonpublic
.txt?AWSAccessKeyId=AKIAYOGNF7UOV5VSVMJR&Expires=1591999565&Sign
ature=zppZEk83FBk6UtlNTqmD5ZR3EOA%3D"

Hello There

File Requests
Browser

Cloud
Storage

Browser

Dryad UI

Merritt UI

Merritt
Storage

Cloud
Storage

LEGACY NEW w/presigned

Large I/O is
directly
between the
end user and
the cloud
service

Dryad UI

Merritt UI

Merritt
Storage

Object Requests (legacy)
Browser

Dryad UI

Merritt UI

Merritt
Storage

Cloud
Storage

File.zip

Browser

Dryad UI

Merritt UI

Merritt
Storage

Cloud
Storage

File.zip

email

Normal Size Large Object - Asynchronous

Download URL

Object Requests (presigned)
Browser

Dryad UI

Merritt UI

Merritt
Storage

File.zip

Browser

Dryad UI

Merritt UI

Merritt
Storage

Cloud
Storage

token

All object requests are asynchronous using presigned URLs

AWS usage change
Before

● CPU utilization and Network I/O on Merritt UI hosts was
consistently high due to the streaming content back to
Dryad.

After

● Network I/O transactions were greatly reduced.
CPU utilization also lessened.

Server metrics and the presigned effect

Before BeforeAfter After

Going forward – What about user uploads?

Dryad Presigned Uploads – Went live in March

● AJAX call to authorize an S3 upload and obtain a secure,
presigned URL

● Evaporate.js is used to chunk user files into parts
● Upon upload completion, all parts are reassembled via an

AWS command
● A manifest is delivered to Merritt for ingest

Dryad deposits in Zenodo

Every dataset is subsequently deposited in Zenodo

● Presigned URLs are used to first download content from
S3 – it is then staged for streaming up to Zenodo.

● If a dataset contains software, Dryad now supports
sending software files directly to Zenodo.

● All Zenodo deposits are tracked via DOI.

Future plans for Merritt

● Learning from Dryad team’s experience with uploads.
● Presigned upload implementation in Ruby and Java
● Recording Zenodo DOIs with associated Merritt objects

The goal of refined integration with Dryad drove us to make
these improvements.

● Resulting API endpoints can be used to obtain any file or
object in Merritt.

● Serve as building blocks for campuses and institutions,
enabling the construction of access layers directly on top
of a preservation repository.

Brightening an Archive

Demo
● Let’s retrieve a Dryad dataset object.
● Review an example of a dataset with software.

Questions?

