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Merritt is a CoreTrustSeal certified, open-source digital 
preservation system maintained by UC3 team at CDL.

● Three independent copies, three different cloud-based storage 

providers, across two geographic locations with differing disaster 

threats.

● Microservices for ingest, storage, inventory, audit, and replication.  



Merritt serves librarians and researchers, as well as systems 
internal and external to the University of California.

● Ten UC campus libraries and affiliated organizations

● eScholarship integration: 85 open access journals

● Dryad OA datasets

Our users



Merritt individually manages files and objects.

● A file being a single digital file

● An object can contain one or more digital files + metadata

Content management in Merritt



“Files” in Merritt are stored in cloud storage

my.pdfManagement occurs over multiple 
cloud storage providers

● Amazon S3 & Glacier
● SDSC Qumulo
● Wasabi



“Objects” in Merritt have digital files and metadata
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Objects in Merritt can have “Versions”
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Range of file sizes across Merritt

Max file size Min file size Average Producer files

289.8 GB 0 8.5 GB 20,102,755 †

Under 1MB 1MB - 
10MB

10MB - 
100MB

100MB - 
1.0GB

1GB - 10GB 10GB - 
100GB

> 100GB

17,830,145 671,802 1,475,116 112,584 11,782 1,231 95

†  Many more system files for restructuring the database in the event of 
     a catastrophic failure.



Dryad contains 34K CC0 datasets from approximately 2000 
institutions, and 100K researchers.

● Every new dataset flows from Dryad into Merritt. 

● Datasets are replicated to Zenodo

● Dryad generates the majority of access requests 
(for individual files and entire objects) 

http://datadryad.org

Dryad integration



Initial integration of the systems

● Downloads of both files and objects were enabled 
during Merritt/Dryad integration.

● However  the initial implementation provided an 
inefficient means for doing so.

Connecting Merritt & DryadBrowser
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Object Requests (legacy) 
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Major hurdles to address

● Long-running operations
○ Ingest

○ Download

● Multiple simultaneous downloads occurring through the 
Dryad frontend.

● Each byte of digital content was streamed through 
multiple applications.

Connecting Merritt & Dryad



Long-running operations

● Exceptionally large files: less than .05% to .5% of content
● Could be ingested or retrieved at any time
● Subject to timeout errors on upload and download
● AWS Load balancers timeout at ~1 hour
● We have configured Apache load balancers to permit 

sessions to last 24 hours
● Waiting for a session to terminate can complicate the 

timing of a software deployment



Additional hurdles to address

● Large dataset objects were delivered asynchronously, 
with an email notification to the user.

● Depending on the domain, emails could be blocked.

Connecting Merritt & Dryad



Approach

● Needed a dependable way to stream content directly 
from the cloud.

○ S3 compatible method that would work across all of our service 

providers

● Settled on use of presigned URLs.

Re-engineering Access



Presigned URL Example: Public
$ cat > hello.txt
Hello There

$ aws s3 cp hello.txt s3://terrywbrady-test-ucop-public/ --acl 
public-read
upload: ./hello.txt to s3://terrywbrady-test-ucop-public/hello.txt

$ curl 
https://terrywbrady-test-ucop-public.s3-us-west-2.amazonaws.
com/hello.txt
Hello There



Presigned URL Example – Non-public S3 Object

$ aws s3 cp hello.txt 
s3://terrywbrady-test-ucop-public/nonpublic.txt
upload: ./hello.txt to 
s3://terrywbrady-test-ucop-public/nonpublic.txt

$ curl 
https://terrywbrady-test-ucop-public.s3-us-west-2.amazonaws.com/
nonpublic.txt
<Error><Code>AccessDenied</Code><Message>Access 
Denied</Message>...



Presigned URL Example – Non-public S3 Object

$ aws s3 presign s3://terrywbrady-test-ucop-public/nonpublic.txt

https://terrywbrady-test-ucop-public.s3.amazonaws.com/nonpublic.
txt?AWSAccessKeyId=AKIAYOGNF7UOV5VSVMJR&Expires=1591999565&Signa
ture=zppZEk83FBk6UtlNTqmD5ZR3EOA%3D

$ curl 
"https://terrywbrady-test-ucop-public.s3.amazonaws.com/nonpublic
.txt?AWSAccessKeyId=AKIAYOGNF7UOV5VSVMJR&Expires=1591999565&Sign
ature=zppZEk83FBk6UtlNTqmD5ZR3EOA%3D"

Hello There
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Object Requests (legacy) 
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Object Requests (presigned) 
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All object requests are asynchronous using presigned URLs



AWS usage change
Before

● CPU utilization and Network I/O on Merritt UI hosts was 
consistently high due to the streaming content back to 
Dryad.

After

● Network I/O transactions were greatly reduced. 
CPU utilization also lessened.



Server metrics and the presigned effect

Before BeforeAfter After



Going forward – What about user uploads?

Dryad Presigned Uploads – Went live in March

● AJAX call to authorize an S3 upload and obtain a secure, 
presigned URL

● Evaporate.js is used to chunk user files into parts
● Upon upload completion, all parts are reassembled via an 

AWS command
● A manifest is delivered to Merritt for ingest



Dryad deposits in Zenodo

Every dataset is subsequently deposited in Zenodo

● Presigned URLs are used to first download content from 
S3 – it is then staged for streaming up to Zenodo.

● If a dataset contains software, Dryad now supports 
sending software files directly to Zenodo.

● All Zenodo deposits are tracked via DOI.



Future plans for Merritt

● Learning from Dryad team’s experience with uploads.
● Presigned upload implementation in Ruby and Java
● Recording Zenodo DOIs with associated Merritt objects



The goal of refined integration with Dryad drove us to make 
these improvements.

● Resulting API endpoints can be used to obtain any file or 
object in Merritt.

● Serve as building blocks for campuses and institutions, 
enabling the construction of access layers directly on top 
of a preservation repository.

Brightening an Archive



Demo
● Let’s retrieve a Dryad dataset object. 
● Review an example of a dataset with software.

Questions?




